大学物理 ›› 2025, Vol. 44 ›› Issue (11): 36-.doi: 10.16854/j.cnki.1000-0712.250038

• 教学讨论 • 上一篇    下一篇

一维振动问题的复数求解方法

陈乐乐,罗覃   

  1. 国家精密重力测量科学中心,基本物理量测量教育部重点实验室,华中科技大学 物理学院,武汉430074
  • 收稿日期:2025-01-17 修回日期:2025-03-16 出版日期:2026-01-19 发布日期:2026-01-19
  • 作者简介:陈乐乐(1989—),男,湖南常德人,华中科技大学助理研究员,博士,主要从事大学物理实验教学和冷原子干涉仪研究工作.
  • 基金资助:
    国家自然科学基金(12004128,U2341247,12374464,12274163,12204186.)华中科技大学教学研究项目2023018资助

A complex solution to a onedimensional vibration problem

  1. National Gravitation Laboratory,MOE Key Laboratory of Fundamental Physical Quantities Measurement,
    and School of Physics,Huazhong University of Science and Technology,Wuhan Hubei 430074,China
  • Received:2025-01-17 Revised:2025-03-16 Online:2026-01-19 Published:2026-01-19

摘要: 本文采用复数形式对一维谐振子系统的运动方程进行了全面求解.采用复数与微积分结合的方法,本工作开展了对大学物理教材中的一维简谐振子模型求解方法的研究,针对不同阻尼及驱动力条件下的运动方程形成了统一的求解方法.此外,本文的方法还适用于非周期性外界驱动力作用下的一维阻尼振子的运动方程求解.

关键词: 受迫振子, 一维振子, 复数解法

Abstract: In this paper,the equations of motion of a onedimensional harmonic resonator system are fully solved using the complex number form. Based on the method of combining complex numbers with ordinary calculus,this work carries out the research on the solution methods of 1D simple harmonic oscillator models in university physics textbooks,and forms a unified solution method for the equations of motion under different damping and driving force conditions. In addition,the method of this paper is also applicable to the solution of the equations of motion of onedimensional damped oscillators under the action of nonperiodic external driving force.



Key words: forced oscillators, one-dimensional oscillators, complex solutions