大学物理 ›› 2012, Vol. 31 ›› Issue (2): 16-16.
• 著者文摘 • 上一篇 下一篇
张广平
出版日期:
发布日期:
Online:
Published:
摘要: 无阻尼单摆运动微分方程是一种具有物理背景的非线性常微分方程,研究其精确解和解法是非线性科学中的一个重要内容.在F展开法的基础上,应用反正切分式变换正弦函数方法,并引入Riccati辅助方程,得到了4种无阻尼单摆方程精确解的结果.达到了丰富此类方程求解技巧和精确解的目的.总结得出此类方程应用反正切分式变换方法具有一定普适性的结论.
关键词: 无阻尼单摆, 非线性方程, F展开法, 反正切分式变换, Riccati方程, 精确解
Abstract: The differential equation of motion of single pendulum without damping is a kind of nonlinear ordinary differential equation with the physical background and the study of exact solutions in nonlinear science is an important work. In order to lay the foundation for studying nonlinear behavior of these issues, four kinds of exact solutions are obtained by using the arctangent fractional transformation method of sine function and introducing Riccati auxiliary equation based on the F-expansion method. The arctangent fractional transformation method applied in such equation is a universal conclusion.
Key words: single pendulum without damping, nonlinear equation, F-expansion method, arctangent fractional transformation, Riccati equation, exact solution
中图分类号:
张广平. 无阻尼单摆运动微分方程的反正切分式变换精确解[J]. 大学物理, 2012, 31(2): 16-16.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://dxwl.bnu.edu.cn/CN/
https://dxwl.bnu.edu.cn/CN/Y2012/V31/I2/16
Cited