大学物理 ›› 2017, Vol. 36 ›› Issue (2): 43-46.doi: 10.16854 /j.cnki.1000-0712.2017.02.012

• 编者按 • 上一篇    下一篇

K-means 均值聚类算法在磁阻效应实验中的应用

王蕴杰   

  1. 青海师范大学物理系,青海西宁810008
  • 收稿日期:2016-05-19 修回日期:2016-07-01 出版日期:2017-02-20 发布日期:2017-02-20
  • 作者简介:王蕴杰( 1974 一) ,男,河北霸州人,青海师范大学物理系副教授,硕士,主要从事近代物理实验教学
  • 基金资助:
    教育部春晖计划资助项目( Z2015064) 、青海师范大学2015 校级教学研究项目( qhnujy2015106) 资助

Application of K-means mean clustering algorithm in the magnetoresistance effect

WANG Yun-jie   

  1. Department of Physics,Qinghai Normal University,Xining,Qinghai 810008,China
  • Received:2016-05-19 Revised:2016-07-01 Online:2017-02-20 Published:2017-02-20

摘要: 对磁阻效应作用原理和磁阻传感器原件的应用进行了介绍,并借鉴数据挖掘技术提出了一种利用曲率及K-means 均值聚类算法对磁阻效应实验数据进行分析处理的方法,结果显示该方法具有高精确度、人为因素小、直观性强的优点.

关键词: 磁阻效应, 磁感应强度, 曲率法, K-means 均值聚类算法

Abstract: We introduce the action principle of magnetoresistance effect and the application of magnetroresistive elements,as well as the design and verification of the approaches of analyzing and processing the experimental data of magnetoresistance effect using curvature and K-means clustering algorithm. The results show that the present method has high accuracy and low human factors and greatly intuitive.

Key words: magnetoresistance effect, magnetic induction, curvature, K-means mean clustering algorithm