大学物理 ›› 2021, Vol. 40 ›› Issue (9): 52-.doi: 10.16854 / j.cnki.1000-0712.210085

• 大学生园地 • 上一篇    下一篇

用连分数定义莫尔条纹“准周期”

叶政君,祝怡然,黄泽江,夏成杰   

  1. 华东师范大学物理与电子科学学院,上海 200241
  • 收稿日期:2021-02-22 修回日期:2021-04-11 出版日期:2021-09-20 发布日期:2021-09-24
  • 通讯作者: 夏成杰,E-mail: cjxia@ phy. ecnu. edu. cn
  • 作者简介:叶政君(2000—),男,重庆人,华东师范大学2018 级本科生
  • 基金资助:
    2020 年国家级大学生创新创业训练计划项目(202010269070G)资助

Defining the quasi-period of a Moire fringe using continued fraction expansion

YE Zheng-jun, ZHU Yi-ran, HUANG Ze-jiang, XIA Cheng-jie   

  1. School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
  • Received:2021-02-22 Revised:2021-04-11 Online:2021-09-20 Published:2021-09-24

摘要: 由两组平行周期条纹叠加而成的莫尔条纹并非严格的周期结构,其近似的周期性在数学上等价于对任意实数的最佳有理逼近.通过将两条纹周期之比近似为其连分数的各阶渐进分数,可系统性地严格定义莫尔条纹各阶“准

周期”并计算其长度;实际观察到的莫尔条纹的周期,是满足非周期程度低于经验阈值的最低阶准周期.基于莫尔条纹与连分数展开之间的对应关系,可以找到一类具有严格周期性的莫尔条纹,以及一类“周期性最差”

的黄金比例莫尔条纹. 本文建立了莫尔条纹与实数基本性质的联系,对莫尔条纹现象的本质提供了新的理解,对所有周期叠加问题都具有普适意义.

关键词: 莫尔条纹, 连分数, 周期叠加

Abstract: A Moire fringe formed by the superposition of two parallel periodic arrays of lines is

not strictly peri- odic, whose approximate periodicity corresponds to best approximations to a

real number. The quasi-periodicity of a

Moire fringe can be rigorously defined by expressing the ratio of the respective periods of

the two arrays in the form of a continued fraction expansion, and its quasi-periods can be

derived by approximating the ratio to convergents of different orders. Meanwhile, the observed

period is the lowest quasi - period with a degree of aperiodicity smaller

than an empirical constant. Based on this direct correspondence between a Moire fringe and

continued fraction of a real number, a set of rigorously-periodic Moire fringes and another set of “worst periodic”

golden-ratio fringes can be identified. The present work connects Moire fringes with the basic

properties of real numbers, and therefore pro- vides new understandings for the Moire fringe

phenomenon, and is of general significance to all sorts of periods su-perposition problems.

Key words: Moire fringe, continued fraction, periods superposition