大学物理 ›› 2021, Vol. 40 ›› Issue (9): 58-.doi: 10.16854 / j.cnki.1000-0712.210063

• 大学生园地 • 上一篇    下一篇

四阶精度差分法解定态薛定谔方程

刘展源,关成波,吕英波,张 鹏,丛伟艳   

  1. 山东大学(威海) 空间科学与物理学院,山东威海 264209
  • 收稿日期:2021-02-07 修回日期:2021-03-28 出版日期:2021-09-20 发布日期:2021-09-24
  • 通讯作者: 关成波,E-mail: guancb@ sdu. edu. cn
  • 作者简介:刘展源(2000—),男,湖南张家界人,山东大学(威海)空间科学与物理学院2018 级本科生.
  • 基金资助:
    山东大学教改项目(B201814, 2020XWKC014);山东省教育厅教改重点项目(Z2018B110)

Solving time-independent Schrödinger equation by the fourth-order accurate difference method

LIU Zhan-yuan, GUAN Cheng-bo, LU Ying-bo, ZHANG Peng, CONG Wei-yan   

  1. School of Space Science and Physics, Shandong University, Weihai, Shandong 264209, China
  • Received:2021-02-07 Revised:2021-03-28 Online:2021-09-20 Published:2021-09-24

摘要: 利用有限差分法数值求解定态薛定谔方程时,文献中常用的是3 点中心差分公式,其截断误差为步长的二次方量级,无法满足高精度要求.本文利用多项式插值法,取最近邻和次近邻节点做5点插值,给出导数的四阶精度差分公式,并用于求解几个常见势场中的定态方程.计算结果表明,相对于二阶精度的中心差分,四阶精度差分收敛更快,在相同步长下得到的结果更加精确.

关键词: 高精度, 差分法, 插值法, 势阱, 基态能量

Abstract: In the finite difference calculations of the time-independent Schrödinger

equation, the mostly used difference formula is the central difference formula, which is

accompanied with a truncation error on the second-or- der of step-size. In this paper, the

fourth-order accurate difference formulas of the derivatives are derived by the

five-point polynomial interpolation, and used to solve time - independent Schrödinger

equation in several common potential wells. The numerical results show that, the

fourth - order accurate difference formula has better

convergence and higher precision than the common central difference formula.

Key words: high precision, difference method, interpolation, potential well, ground-state energy