本文在实验教学中引入一种非线性混沌摆系统,通过调节混沌摆的驱动力周期演示了该非线性动力学系统出现混
沌现象的过程,从而让学生了解混沌现象的参数敏感性、相图特点、频谱特性等基本特性.为了进一步了解该混沌摆的特性,本
文建立了该非线性摆系统的简化动力学方程,在数值上对其进行了研究.基于动力学方程的数值模拟,克服了实验上相关参数
定量改变困难、摆动稳定性不易控制、实验时间周期长等问题.在数值模拟中,通过改变不同参数得到了相图、频谱图以及分岔
图,比较深入详细地对这种混沌摆的相关特性进行了描述,也有利于学生加深对混沌摆的理解.