大学物理 ›› 2025, Vol. 44 ›› Issue (11): 72-.doi: 10.16854/j.cnki.1000-0712.240580

• 教学改革 • 上一篇    下一篇

基于物理诺奖背景的医学和物理交叉人才培养

董仕练,宁志芸,秦鹤洋,马 良   

  1. 1. 武汉大学 物理科学与技术学院,湖北 武汉 430072;2. 武汉大学 第一临床学院,湖北 武汉 430061
  • 收稿日期:2024-12-12 修回日期:2025-03-10 出版日期:2026-01-19 发布日期:2026-01-21
  • 作者简介:董仕练(1993—),男,湖北孝感人,武汉大学物理科学与技术学院中级实验师,博士,主要从事大学物理实验教学和SERS液体活检研究工作.
  • 基金资助:
    武汉大学实验技术项目(WHU-2023-SYJS-0015);武汉市知识创新专项曙光计划项目(2023020201020263);湖北省新工科建设项目(XGK03001);教育部产学合作协同育人项目(231104730103537; 231100532102141);教育部物理学育人模式改革虚拟教研室改革课题(PTJG_2025_029);湖北省自然科学基金一般面上项目(2025AFB515);国家自然科学基金青年科学基金项目(12304046)资助

Cultivating Talents at the Intersection of Medicine and Physics Based on the Background of Physics Nobel Prizes

DONG Shilian1,NING Zhiyun2,QIN Heyang2,MA Liang2#br#   

  1. 1. School of Physical Science and Technology, Wuhan University, Wuhan Hubei 430072,China; 2. The First Clinical College, Wuhan University, Wuhan Hubei 430061, China
  • Received:2024-12-12 Revised:2025-03-10 Online:2026-01-19 Published:2026-01-21

摘要: 以具备典型物理-计算机学科交叉特色的2024年诺贝尔物理学奖为背景,将大学物理实验涉及到的表面增强拉曼散射(SERS)光谱技术作为切入点,引导医学本科生借助物理光谱学技术对比健康对照组与肝癌组的血清SERS光谱差异并进行振动键归属溯源,探索出两类人群血清中的肝癌标志物AFP及CA19-9含量差异.进一步探究这种“医学-物理-计算”学科交叉型案例对交叉物理人才培养的作用,对于拓宽创新交叉型物理人才培养模式的改革思路极具借鉴性.

关键词: 机器学习, SERS光谱, 肝癌诊断, 学科交叉, 人才培养

Abstract: Against the backdrop of the 2024 Nobel Prize in Physics, which is a typical physicscomputer science crossover, takes the surfaceenhanced Raman scattering (SERS) spectroscopy technique involved in university physics experiments as an entry point, and guides undergraduate medical students to compare the differences in serum SERS spectra between the healthy control group and the hepatocellular carcinoma group by means of physical spectroscopy and to trace back the vibrational bonds, so as to explore the differences in serum levels of The differences in serum levels of AFP and CA199 were explored between the two groups. Further investigation of this ‘medicinephysicscomputing’ crossdisciplinary case on the training of crossdisciplinary physics talents is very useful for broadening the reform ideas of innovative crossdisciplinary physics talents training mode.

Key words: Machine learning, SERS spectroscopy, liver cancer diagnosis, discipline intersection, talent development