大学物理 ›› 2020, Vol. 39 ›› Issue (01): 33-37.doi: 10.16854 / j.cnki.1000-0712.190009

• 物理实验 • 上一篇    下一篇

一种非线性动力学系统混沌现象的深入研究

李明达,袁哲诚,罗锻斌   

  1. 华东理工大学物理系,上海200237
  • 收稿日期:2019-01-07 修回日期:2019-05-13 出版日期:2020-01-20 发布日期:2020-03-01
  • 通讯作者: 罗锻斌,E-mail: dbluo@ ecust.edu.cn
  • 作者简介:李明达( 1982—) ,女,辽宁大连人,华东理工大学物理系实验师,硕士,主要从事大学物理实验教学和研究工作
  • 基金资助:
    华东理工大学2018 年度国家级大学生创新实践项目( 201810251076) ; 华东理工大学2018 年度本科实验实践教学改革与建设项目( BK0121004) ; 2019 年华东理工大学教育教学方法改革与研究项目( 80222301901001) 资助


In-depth study of chaos in a nonlinear dynamical system

LI Ming-da,YUAN Zhe-cheng,LUO Duan-bin   

  1. East China University of Science and Technology,Shanghai 200237,China
  • Received:2019-01-07 Revised:2019-05-13 Online:2020-01-20 Published:2020-03-01

摘要: 本文在实验教学中引入一种非线性混沌摆系统,通过调节混沌摆的驱动力周期演示了该非线性动力学系统出现混

沌现象的过程,从而让学生了解混沌现象的参数敏感性、相图特点、频谱特性等基本特性.为了进一步了解该混沌摆的特性,本

文建立了该非线性摆系统的简化动力学方程,在数值上对其进行了研究.基于动力学方程的数值模拟,克服了实验上相关参数

定量改变困难、摆动稳定性不易控制、实验时间周期长等问题.在数值模拟中,通过改变不同参数得到了相图、频谱图以及分岔

图,比较深入详细地对这种混沌摆的相关特性进行了描述,也有利于学生加深对混沌摆的理解.

关键词: 混沌摆, 数值模拟, 相图, 分岔图

Abstract: A kind of nonlinear chaotic pendulum system is introduced into the experiment teaching.By adjusting the period of the driving force of the chaotic pendulum,the process of chaotic phenomena appearing in the nonlinear dynamic system is demonstrated so that students can understand the basic characteristics of chaotic phenomena,such as parameter sensitivity,phase diagram characteristics,spectrum characteristics and so on.In order to further under-stand the characteristics of the chaotic pendulum,a simplified dynamic equation of the nonlinear pendulum system is established and studied numerically.The numerical simulation based on dynamic equation overcame the difficulties of quantitative change of experimental parameters,difficult control of swing stability and long experimental period.In the numerical simulation,the related characteristics of the chaotic pendulum is described in detail by changing the phase diagram,spectrum diagram and bifurcation diagram obtained by different parameters,which is also helpful for students to deepen their understanding of the chaotic pendulum.

Key words: chaotic pendulum, numerical simulation, phase diagram, bifurcation diagram